
Special

•

U.S. Department of Justice
Office of Justice Programs
National Institute of Justice A

U
G

. 0
4

REPORT

Test Results for Software Write Block Tools: RCMP HDL VO.7

Office of Justice Programs • Partnerships for Safer Communities www.ojp.usdoj.gov

When two implementations of a given specification behave the same to client
applications, then the two implementations can interoperate. For the purposes of this
document, we consider two GSC-IS implementations to be interoperable if they have
each passed the NIST conformance test system.

2 Architecture of the GSC-IS

The Government Smart Card Interoperability Specification describes an architectural
model that includes the following components:

• The Basic Services Interface (BSI), a core set of smart card services at the
Application Programming Interface (API) layer between client applications and
the smart card service provider modules.

• The Extended Services Interfaces (XSI), which define additional API functions

specific to particular implementations. These additional functions are non-
interoperable, and are not specified in the GSC-IS.

• The Card Edge Interface (CEI), which defines standard, default sets of
interoperable Application Protocol Data Units (APDUs). The ADPUs are a subset
of those specified in the ISO 7816 standards. These default sets of ADPUs support
both virtual machine and file system smart cards.

• The GSC Data Models, which define the set of containers and data elements

within each container on cards supporting that data model. The GSC-IS defines
two data models: the GSC data model and the Department of Defense Common
Access Card (CAC) data model. The GSC data model was developed for version
1.0 of the GSC-IS.

• The Card Capabilities Container (CCC), one of the required containers present on

GSC-IS smart cards. The purpose of the CCC is to describe the differences
between the given card’s native APDU set and the default set defined by the GSC-
IS CEI.

3 GSC-IS Conformance Clause

The conformance clause specified in the GSC-IS specifies conformance conditions for
smart card service provider modules (SPMs) and smart cards themselves:

• An SPM implementation that claims conformance to the GSC-IS must implement
each of the following:

− The Architectural Model, as defined in Chapter 2

 -2-

− The Access Control Model, as defined in Chapter 3

− The Basic Services Interface, as defined in Chapter 4

− The Virtual Card Edge Interface, as defined in Chapter 5

− The Card Capabilities Container, as defined in Chapter 6

− Container Naming, as defined in Chapter 7

− Support for both of the Container Data Models defined in Chapter 8 and the
appropriate Appendices

− At least one language binding for BSI Services, as defined in the Appendices.

• A smart card that claims conformance to the GSC-IS must support each of the

following:

− The Architectural Model as it relates to smart cards, i.e., as defined in sections 1, 4,
5, and 6 of Chapter 2

− The Access Control Model, as defined in Chapter 3

− Either the file system card edge interface or the VM card edge interface, as defined
in Chapter 5

− The Card Capabilities Container, as defined in Chapter 6

− Container Naming, as defined in Chapter 7

− One of the Container Data Models defined in Chapter 8 and the appropriate
Appendix.

4 Conformance Requirements for GSC-IS

The conformance requirements for implementations of the GSC-IS are defined at two
levels: the service call level and the card command (APDU) level.

The service call level is concerned with functional calls required to obtain various
services from the card. The GSC-IS addresses interoperability at this level by defining
the Basic Service Interface API.

The card command level is concerned with the exact APDUs that are sent to the card to
obtain the required service. The GSC-IS addresses interoperability at this level by
defining the Card Edge Interface API. The CEI consists of a card-independent, standard
set of APDUs implemented by the Service Provider Module,

The conformance requirements for smart cards themselves include the mandatory Card
Capability Container. The CCC is a file which contains rules and procedures for

 -3-

L e v e l 1

L e v e l 2

L e v e l 0
M i n i m u m

E x a m p l e o f a L e v e l s s t r u c tu r e

Profiles constitute a less rigidly constructed collection of sets of functionality. Each
profile must contain the minimal set, but otherwise can partially intersect, or be disjoint
from, other profiles. Profiles may be designed for particular applications or user
communities.

Level 0
Minimum Profile 1

Profile 2

Example of Profile Structure

It is possible that a profile structure can be combined with a level structure:

 -8-

16 of 57

5.3 Test Configurations

The host computer and hard drive setup were determined by the test case parameters. Two or
three disk drives were required for each test case. Source, destination, and media disks were
required for all test cases. The source disk provides something to copy. The destination disk
provides a place to put the copy. The media disk provides a place to put the image file for test
cases that require the creation of an image file. The media disk also provides the runtime
FreeBSD environment for running dd. A DOS Boot floppy was used to create the runtime
environment for the test case; it contained control scripts and log files. A CD–ROM contained
the support and utility software. The support software provided for setup of test data,
measurement of test results, and control of the test process.

For all the dd tests, one of the following extended BIOS computers were selected: Paladin,
HecRamsey, McCloud, McMillan, AndWife, Cadfael, Rumpole, Wimsey, or JudgeDee. None of
the Nexar computers were used.

The source disk interface and type of source partition determined the source disk selection. A
disk was selected with the matching interface that contained a partition of the type required for
the test case. The destination interface and the relative size parameters determined the selection
of the destination drive. A drive was selected with the specified interface and, for whole-disk
operations, size relative to the source. For partition operations, the actual size of the destination
drive did not matter because the size of the partition on the destination was relevant. After the
source and destination drives were selected, the media disk was selected for one of the two
available drive slots.

The 12 system hard drive configurations used for the tests are presented in Table 5-4. The Step
column indicates the phase of the test to which the configuration applies. The Source column
indicates where the source drive was mounted. The drive was usually positioned as primary drive
1. SCSI source drives were set to SCSI ID 0. The Destination column indicates the positioning
of the destination drive. The Media column indicates the positioning of the media drive.

Table 5-4. System Configurations

ID Step Source Destination Media
1 wipe IDE secondary 1 IDE primary 0
2 wipe SCSI ID 1 IDE primary 0
3 dd IDE primary 1 IDE secondary 1 IDE primary 0
4 dd SCSI ID 0 SCSI ID 1 IDE primary 0
5 dd SCSI ID 0 IDE secondary 1 IDE primary 0
6 dd IDE primary 1 SCSI ID 1 IDE primary 0
7 compare IDE primary 0 IDE secondary 1
8 compare IDE primary 0 SCSI ID 1
9 compare SCSI ID 0 IDE secondary 1
10 compare SCSI ID 0 SCSI ID 1
11 hash IDE primary 0
12 hash SCSI ID 0

17 of 57

5.4 Support Software

FS-TST Release 1.0 was developed to support the testing of disk imaging tools. FS-TST Release
1.0 can be obtained from http://www.cftt.nist.gov. The support software serves five main
functions: initialization of a disk to a known value (DISKWIPE), comparison of a source with a
destination (DISKCMP, PARTCMP, ADJCMP, and SECCMP), detection of changes to a disk
(DISKHASH and SECHASH), corruption of an image file (CORRUPT), and simulation of a
faulty disk [BADDISK and BADX13]. All programs (except for BADDISK and BADX13) were
written in ANSI C and compiled with the Borland C++ compiler version 4.5. BADDISK and
BADX13 were written in assembler language and compiled with Borland Turbo Assembler
version 5.0.

5.5 Basic Structure of Test Cases

A test case has five parts: setup, execution of the tool to acquire an image, execution of the tool
to add the image to the case file, execution of the tool to restore the image to a destination drive,
and measurement of the results. The setup for the test case was done in the DOS environment
and involved the following steps:

1. Initialize a source disk to a known value.
2. Hash the source disk and save the hash value.
3. Initialize a destination disk to a known value.
4. If the test requires a partition on the destination, then create and format a partition on the

destination disk. If the test uses a destination partition larger than the source partition and the
partition type is either NTFS or Linux, then compute a reference hash of the excess sectors of
the destination partition.

5. If the test uses an image file, partition and format a media disk and load FreeBSD to the
media disk.

Note that steps 1, 2, and 5 are performed once and then used for several test cases.

The tool execution was done in the FreeBSD environment. The steps in this execution phase
were:

1. If an image file is required, use the tool to create an image file of the source on the media

disk.
2. Use the tool to create the destination disk by either restoring an image file of the source to the

destination or copying the source to the destination.

Measurement of the test results had four steps:

1. Compute a hash of the source disk and compare the computed hash value to the saved hash

value. If the hashes are the same, then the tool has not altered the source disk.
2. Compare the source to the destination to determine what sectors match and the disposition of

any excess destination sectors.
3. Examine the tool log file for any expected messages. For example, if the destination is too

small, then there should be a message indicating the condition.

